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ABSTRACT A
1237

This report deals with some general properties of the dyadic Green's
function‘g for oscillatory electromegnetic waves in a homogeneous anisotropic
medium, and with aspects of the theory of antennas in such & medium. The
results, byproducts of a celculation of the impedance of a cylindrical dipole
antenna in the magnetosphere, are largely independert of the main argument
toward that calculation and are believed *o have significance for more general
problems.

We first give the Fourier representation of G(x), a triple integral
representing & superposition of plans waves of verious propagation vectors‘go
With this representation we show that G is an even function of its spatial
argument'if anéd that when the representation is written in terms of spherical
coordinates in k-space, the radial integral, over & positive R-axis, can be
extended to the full R-axis, a form mathemastically convenient in applications.

From the Fourier representation we also argue that a closed-form expression for

G is generally unobtainable: For a clesed form would amount to a closed-form

prescriptior of the surfaces of constant phase, describing the field et great
distances from a point source in the snisotropic medium; the comstant-phase
surfaces are anvelopes of families of plane wave-fronts of the Fourier super-
position, and the corresponding envelope problem, as found in the 19th century
literature, is generally insoluble in closed form.

We then consider the complsx power and the variaiional prescriptions for
calculeting the input impedance of perfectly conducting antennes f=d at a thin
slit. For the enisotropic medium the latier prescription leses ifs variational

efficacy %o the extent that G, as a dyad, is non-syrmetric, as is the case for
It :
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the megretosphere. When ell zurvents in the antenns can be assumed mutuslly
pavallel, the antisymmetric pert of G has nco effect and the variational form
is again powerful for antemna-current and impedance =stimates.

In calculating the impedance of thin cylindrical antennas, a commonly
made assumption is that the radiating currents can be taken as concentrated on
the cylinder's axis rather than distrituted uniformly around its circumference.
Vie the Fourier representation for G we are able io prescribe exact correciions
for this "axial current! assumption, apd to find that it creates no error in
the {irst two, dominan%, terms of the usual expansion of the impedance in

functions of the cylinder's radius. A.LIT’I/JIZ




1.
R
3.

IABLE OF CONTENTS

ABSTRACT

INTRODUCTION AND OUTLINE

THE GREEN'S FUNCTION FOR THE HOMOGENEOUS ANISOTROPIC MEDIUM

REVIEW OF SOME ANTENNA THEORY

APPLICATION TO THE THIN CYLINDRICAL DIPOLE IMPEDANCE
CALCULATION

APPENDIX ] - PROSPECTS OF OBTAINING A CLOSED-FORM DYADIC
GREEN'S FUNCTION

APPENDIX I1 -~ REMARKS ON THE PROBLEM OF ESTIMATING THE
IMPEDANCE OF AN ANTENNA IN THE MAGNETOSPHERE

REFERENCES

iv

13

17

21
23



TSOTROPIG

MEDIUM AND CERTAIN OF JTS APPLICATIONS TO ANTENNA THEORY

1. INTRODUCTION AND OUTLINE

We have recently reported a numerical calculation of the irput impedance

of a thin center-fed cylindricel dipcle in & homogeneous magnetospherie

~ - =

medium {1;%, using a previously established [Z] generslization of the 'complex

mower® formulation [3). The numerics
£~
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lossless isotropic limit and otherwise appear satisfuciory, parti-ulsriy whers
a sinusoidal current distribution 1s properly assured %to hold aloag each hall
of the dipole. During the course of the necessary mathemebdical avcalysis, we
discovered some general results applicable to this and other antenwns problaas,
the most important being a means of casting the impedance ecslculation in‘c a
variatiopal form without sﬁbst&ntial changes in tre caloulaticnsl procedures
cecessary for ob%aining nomsrcicel estimates. In this seport we presso® “ng
mest lmportant of these cevelopments, reserving their spplication to the numeri-
cal impecance esiimate for a lszter rzport.

In crder *o establish motivation and wurderlying ideas, we review briefly
some standard elactromagnetiz and antenns thecry. Our firel copcliusion iz thav
the nonsymmet~ic dyadic Green‘s function for a homogensous enisctropiec medium
cennot be expressed in closed form, but must be represented, say, through a

Fourier integral. Then we review the complex power ané tas verialonal [4°

the impedance of a perfectly 2ondacting svtarsne fed at

oL




variational character and ccunsequent efficacy ip establishing s 'best’ antenna
current distributior exgept for geomeiries in which one may assume that all
current elements are mutually parallel. This assumption is proper for a thin
dipole. The further “axial current” assumption, that radiating currents in
the dipcle can be considered as concentrated on the dipole‘s axis, is standard
(end was mede in our numericel calculstiox). The fact that we are forced, for
the anisctropic case, to use a Green's function representation, rather than the
closed form of the usnual isotropic calculation, now leads easily to sxect
corrections for any errors made by using the foregoing axial current approxims-
tion. Some of the mathematical details, znd a discussion of the physical
problem of antenna impedarce in a space-probing antenna, are relegested to

appendices.

2. THE GREEN'S FUNCTION FOR THE HOMOGENECUS ANISCTROPIC MEDIUM

We assume a rectengular X, , X, X; ccordinate system in which E,, H . or J,

represent the comporent of eleciric field, magretic field or source current

LAY

density parallel to the x, axis, j = 1, 2. o~ . If all sources J ave oscilla®-
ing according to exp({-iwt) and the ambient medium is the moet genmersl homogeneous

anisotroplic one [5:, the reduced Maxwell's equstions take the form

W

(g’xgi; ~cawp e, = O -

g
d

(Tal) riwep £, =J;

Here and subsequently the summstion convertion is used:

abnility henancgy rhsy ave

wEoof position outsids

&



of specifically designated bodies.
The Greer's function, variously denoted as G = Gfx,x') + G, ix,x') = Gy,

is a dyad or matrix connecting the radiated electric field E(x), x - X ,x,.%, ).

with current sources J(x'):

E.cx) = M 6y B0 ) 2,95, 4y - ot iz

~

Yo get a representation for G we firsh write the reduced Mexwell's equations

1} in matrix operator form, using 4. to symbolize the operation 3/ax, :

o —/3 Glz‘ I/!‘:’ Hon /4.';&.[‘/:4,& A /s(,\

d's 0 -4; .i f& Efj‘g:‘jw‘ Mg, /22‘[‘\“ 3 ?“‘w& /?{
\‘dz d 0 /NES/ Y Hazfas ="7'.5~

o~
PR

Q
X
+
.
>
i
™
i
X
N

Solving the first of the foregoing for H and substituting the result into the
second, we obtain

dz-d£E- whe £ = ded (5

-

where y = 4 ' is the metrix inverse 7o u. Now we sssums that both E and J, heve

Fourier representations; i.e., are superpositions of plarve waves poopagating

as exp(ik.,x;, + iky%, + ikyx3) = exp{ik-x). Thus if

e, (k) = (27) /E () Ed% (6a)

then

G

E(?’) / ,é}fg’:’i‘%’@f‘f {6b)

ig the inverse relatiosn: eimilar wels

substitute the eopresentations for k. ]

cimplied in the 4 mairices) ander the intesgral si



of elk°X in the resulting integrands and obtain:
2 — st
fgogo,/geg‘i'w f&i*i“ aw}é (7

where X represents the matrix
(8a)
k 3 12} -AI !
/
¢

so that Ky, = +{k , K, or k). (8b}

we have

whence from (6b)

Ftz) = -zwl[e"ﬁ'%m' HOYL,
4

~

>
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“ﬁ‘lb N
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N
=
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=Y
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e
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=
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Thus we have, from (2),

~? __‘_l;'_ff_{ Q;~ﬁ(z,z}/ -/'50/5%=£;L{;{«2';§
Cy(2, %)=~ @/ (17 )y 4= E4TEE)

Thus the properties of G”(aég,gy) ere determined by the k-dependent matrix
M- KyK+ ofg, or Moy = KirureKe: + afe; ;o From (8b) it is seen thet M,; is

an even function of k, i.e. has the same velue wken X for k, ,k, .k, )
L L

i

]

by ~k {or by =¥ .-k ,~k ). The mateix slement (M ~j, , is iv the ususl fasnion

the cofactor of the matrix element M, , divided by %tns getermpinant (Ml and, is



with M, ; even in

R

s so then are [M| snd (31,°);,. In the exponential of the
integrand of the representstion (11) one sees that (7;)=(z—x?) = ke {gi-x);
hence replacing k with -k gives ‘the representation for Gnggf—;) identical
with thet written for G;;(x-x'):
Cuylz-X)= 6y (%% (12)

Next, by examining the expansion of X°v°K, with the =2id of (8a) and (8b),
one sees that the cofactor of M. is of po higher than fourth degree in
X, ,%; ,ky . Finally the only possible terms of =ixth degree in |M| arise from
ot - 1K 1K) bt 13
K, yky ok .

Thus we have the dyadic Greex's fuacticn Fourier-represented in the form

e Lk (K- x}&ﬂ») %
Cy(X-%)=6ylE ) (2:’7 '[ a® oy

i

0, sc that {M] is at most of fourth degree in

wher; Pyy and Q wre poiynomials of even, at most fourth, degree ir k ,k, jk; .
By transforming to spherical coordinetes im k-space sccording, say, o
‘é‘»’ = ﬁ .5/}‘1‘ {os ﬁé
=/ smw Jsm{ll{ {14}
}ﬁg = fﬁ76¢u;é?
we express P;, and Q as polynomiesls of at mos% second degree in R with coefii-
cients which are functions of 6, ¢. The trsnsformation slso replaces

Vi é’?rffﬁr P
j’qul{ with // " Iy 51/74.90’5’9%

o i
”"[) “Q
Thus the integrend is @n even funciicn of R sxeant for the %Kﬁr.k ¥=xl) . Tucig
But, asscrding ho 112}, we may veplsre x-x, with ¥ -, wiitnoub shapging the



result:

Gotx-70= 2[64(%- %)+ 6y (x- %]

:—75-”-«3///[ ke (7‘ z) "of:‘{‘(?-"‘ ﬁhﬁq/ﬁswﬁcﬁ?”'

Now the entire integrand is even in R, so that the integral over the positive

reel R axis can be extended to the entire real R axis:

&Aé (Zg' ) A%J():f;gﬁ?ﬁﬁ,ch%;my¢%l )

/ P
Gy(x-%) = /@7;

o~

-0

The importance of this extension is that it permits evaluating the E integration
by residues, in certain applications to be discussed.

We now inquire whether G, can be obtained in closed form, i.e. whether (13)
or (15) cen be evaluated for the gemeral case. When both g = eI, p = uggg
(I the identity matrix) and thus are essentially scalars as in the free-space
case, P,; and Q have commen factors, cancellation of which leaves P, /O in the
form of a quotient of second degree polynomials in k, ,ky,k,, or firs® degree
polynomisls in R®. Further, it is ssen that typical terms a2kl k,®, bl ®
ck k3, 4 in the polynomial P, in the iniegrand of {13) ere oblainsable by

a .
applying the differsntial operators a 3 « b s , oo & d
ax, 3%, fx, w® ax ex

externally to the (scalar) integral

/ p3
s o= 2 [ i h(x-E) A o
L) = Tl T T (16a’
S~ R2r; [~ Qi)
4
j/‘*f;?'“ e e
f £ A oy Y - o I
- el / £ ; P A A Fo f .
oo A B AR R T su ﬁ‘fjﬁ’;‘:’fﬁég
F6 T ts
L7



Hence we have
5 (v -2 )
Go(t-2:=Cy9'Z % (16b)

where 0;; is a differential operator of even degree operating on g(x-x') as
function of x. The evaluation of the single (scalar) integral g(x-x') thus
suffices for obtaining 9.. in closed form. Here we note that if Q(]}_) were left
as a fourth degree polynomial in %, or second degree in R?, there is no
question that the R-integral is performsble by residues at the cuiset. (Ore
sets Im(e,) > O in the scalar case to determine location of the zeros of Q(’l«i)’;
analogous methods work in the general case.) In (15), R®P; was of higher
degree in R than Q(k) so that the immediate residue-evaluation of the R-integial
wes not possible there.

Further discussion of the evaluation of G {or g) is relegated to Appendix I
as not germane to the main line of argument. It is shown heuristically thers
that G cannot have a closed-form evaluation in this general case.

We now consider G, ,{x-x‘) = G;;{x"'~x}) = G,, as a matrix, or dyad. We write
BV Y e @ tme 4

i
L

=dlp.,+6) +46,- Cr)= N
GL';» = Z(G‘J 7“(7‘_,;. 74‘2@@‘4' (71!:.:};: 5‘J +f4‘;j

where S, = S;; i8 a symmetric 3x3 matrix A,; = -A;, is an antisymmetric one.
Wrifing E’:T as the transpose of G we have G,; = (93)33 A (§_T)i5 - (fg)ﬁi

or ,I},T = =h, §_T = 8. From (8) we have ’lg_T = «K so that

7 2 N\ 7, 2.7
s’ e .
M = (k2 h+2%)=(k 2 L)+
r 7, 2.7 L L wzér
= iw el =K L
bl

Thus M Y for all k if and only if XT oy el - ¢, that is, if both ¢_and v

ere symmetric matrices. Since (M- VT Mo, [yl e v, if spd only if ,15“‘ = M.

T
[ T. ! we have via P, in {13} or (15) that 9} = G, ov Gy, = &, . ovly when

~ ~ e €



pT = W and eT = e; i.e., when and only vhen both ¢ and p are symmetric itensors
~ ~ n ~ ~

do we have a symmetric Green's function Gy = G;; = 8¢ .

In summsry, we conclude that the dyadic Green's function Gig€§) for
electromegnetic waves in a homogeneous, anisotropic medium is an even functiom
of its argument x. As a matrix or dyad, G is symmetric (G; = Gy3) if and only
if both dielectric and permeability tensor are symmetric. In the general case
}5 is representable as the eum of a symmetric and an antisymmetric dyad, each
being representable through a triple Fourier representation, i.e. as a super-
position of plane waves of varying propagation constanis 5, When the represen-
tations are given in terms of spherical R,0,# coordinates in k-space, the
radial integral can be taken as one-half the integral over the full R axis.

In the general case, the argument of Appendix I indicates that G is unavailable

in closed form, so that the Fourier or other representation is necesaary.

3. REVIEW OF SOME ANTENNA THEORY

We apply the properties of the Green’s funciion as summarized in the
foregoing psragraph to the problem of computing ths input impedance Z of a
perfectly conducting antenna fed at a gap. The theory for antennas immersed in
a homogeneous anisotropic medium is not discussed in the standard works, and
for this reeson we modify some standard antenna theory to take account of the
generalization.

We take as the ideal antenna under consideration a smooth closed surface
L which is perfectly conducting everywhere except in a elit, or antenna gap,
of infinitssimal width A, 'cut’ along s smooth curve connecting the surface
pointe s and b. Lel n measure distance from a along the slit, and assume a

i e

surface er-rent-densily q€u§ {flowing rormal to the 513t as tbe antenuas ipput



b
current distribution. The antenna input current is then defined as T = LJ {u)du.

As = result of this input, the surfece current density bl (g) will be found et
the general point g of &, with l(g) defined as’g(u) when g lies in the slit at
distance u from a.

The surface current density 1( 9-) radiates, so that the electric field E(gg)

at a general point x is given through the Green's function:

Ex)=] 6z-5) 7695 (17)
—~ ;zi

in which the conversion from the volume integral (2) to the surface integral

(17) is assumed properly made. Letting x be at the surface point 8, and taking

account of the fact that the tangential componant Et( 5’.:} of the electric field

must vanish at each surface point g of a perfect conductor, we have

é:t(é) - Q (,5,"}5,’ ;!(;5’)0/;’: Et{u), say, at position u in the sliﬁs)
E 0, elsewhere on I.

where the subscript t denotes the compenent tangent %o T at s. Now we define

& mean antenna voltage V *‘hrough

4
oG -af e g0t
‘a

end, finally, define an an‘enva impedance Z through V = ZI. We now have

&
where, in the las’t subs t1 rution, advantage was taken of eg. {18) and the

definition of j

e
w2~ i" Y4 s e 2 ;;2/
=¥ e ) 7S .
- f f / !3%) i {ihé / Ux,!;r’g’”' d’s Fs \2ia;
T
303
v 2 2,
ez B 3 /“. . .y N
-0 S5 ég{,% Y, jggmfs d’s
!%A; g



which by virtue of (12), is

[
i~
o3
—

[f7 - €'2/J’(5’)JC/5 s ’{s)c/s oy
z

Writing the matrix G as the sum of a symmetric matrix S and an antisymmetric

matrix A, we have

a=g b

where
joSh ks A h=h A
o~ o~ o~ ~~

Js k being arbitrary vectors. It is seew that G may be replacad with £ in

(21a, b), the contribution of A to Z varishing. Still etipulating that the

input currernt J{u) represents the value of the surface current j{s' for s in
o~

e

the slit, we have £ variational estimaie for Z in

TZ //{(5> 5(2- ‘"z{,é,ﬂ/;] Q/fS/ {22}

provided that one can replace G with § iv (18). Thie rveplacement is obvicusly

correct when both the ¢ and the u tensors are symmetric, for them 4 % O and

P

G = 8. (The replacement is sls> justified under certain ofher circumstances

Y

to be detsiled later.} For, suppose we seplace the sxact i(g; with the approxi-

’!

) + ak{s) where k(g} is an arbitrary surface current distribu-
o~ - P

[
0
L

mate jii{s} = i(
P

A~

t
!

tion venishing in the slit, and ~ iz a parameter whose ‘best’ value is to be

determined. Writing

IZZ =//J/}!,;/(§)‘ ..5-(5'15/)‘ /(s) Olélo/é, we have
Jz Z o

// P . 'rz— 12
i’ S ®
i ;/ 5( «»é}c;‘é;q}is G’:&
= i
YT -
ﬂ/uf,., ~ ¢ N APA 2 fors -~ , P 2 _,.d"g“-" .
s 6" - i % 3 Y "y £ - Cl EA ! o
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since %he coefficient of 5(3) or %(E? venishes, by {18), sxcept in the slit,
where k vanishes by essumption. We therefore have both Z2° = Z at v = O and
dZ‘/dy = 0 at ¢ = 0. Thus if the guessed antenna current distribution j?(f)
is a good approximation (as judged by the smallness of n, when the ‘error
current’ satisfies say Izg°§das = 1), the estimate Z' is even closer to Z, by
0(e®), as compsred with C{q) for the error in the assumed current. This means
tha’t we may take a parametrized trial current distribution, regarded es
accurate for some particular ‘best’ set of parameter values, aud choose as
‘best! that set for which each pavameter-derivative of Z' as computed iz {27)
vanishes. The computed Z' is then to be regarded as a better approximation to
Z than the 'best’ j' is to j.
~ ~

We are not eatirely sure that the Z as computed ebove is in fact the
antenna impedance in any practical case; details of the gap geometry and
currents have been brushed over here, but relevant considerations are discussed
qualitatively in Appendix II.

For the case that G is non-symmeiric, so that 4 # 0, the formula (22) for

h‘-

Z retains its variational character provided that the anienns is consitructed of
Faraday screen material such that all conducting elements are parallel to some

fixed vector v. For then, in egs. {18}-{22) the vectors E;ls) axd j’s ) have
A fra AP o

2
o
P

the form e{s)v, jist}v; the tangential field ccmbribution ea{s)vﬁssP owing %o

~r M
the current j{s'!)d®s® = = 3 a*,vdes , arisinrg from the antisymmetric termﬂércf G.
~r N S0
has amplituds given by egl(s'(v.v)Ps’ = {v- A’s~s“\ov} a*(s )#®s7). But
RE A p AF o~ i
{v sz} s owing to the en*isymmetry of 4 as a matrix of dyad. Thus the
A pr

electrinc fielid heageniial to the Faraday-scree: alaments is steictly determined
by the symmetviz part of the Green's function, regsr~dless of the current disitvi-

bation sssumed flowing in the slements or “he spilsymmetry of *the awblert medium.

fnt

F. )



Inscfar &s an antenma built of *hin, mutually parallel conductors can hs
regardsd as approximated by a similar ome built of pavallel Favadsy screen
material; ore can thus compuie the impedance for the antepna with a variagticnal
form.
The “compiex pover” formuiation of the impedance is cbtained as follows:
With V = Z1 as before, and lettving I¥,j¥ dencte the cowplex cowjugats of I,i’we

have, following the ganeral logic of egs. {17) through (20),

- - % : <
ZUDN=7]]7=] V=x//-/?§)’£(§‘§3}v/“'§')°j§°"g' (24)

The double surface integral on the vight differs from that of the "variastioral’
form, egq. {21b), only tbrough the replacezment of one of *he surfiace ~u—rants
by its complex conjugate. But this replacemeni is enough to destroy the

variational character so that the form (24) does noi permit estimatirg ‘best

parameters when % is computed through = parametrized assumed current distribu~

tion; mlso the Z-estimete for s given current distribution is betrer when ma
by {2ib} then by {24, agein owing o the veristiounel chavacter of the formsr

When the anteuna geometry and agymmetry of the medium are suen thev {21b) is
non-veriational it is conjectured that /21b) or (22) is still preferable %o
(24), but we have po mesas of proving “his. Op the other hend *he Fwo formula-
tions pcse aboul “he same methematical problem inm their evaluation; end give
“he ssme impedance-values when correct anterra currsnt distributions ars used,

t car he used o show tha. Schuinger's

I% is clear tha' the presert arvguxen

S .
CORCUTTLINE aRY



reciprocity; i.e. syametry on the part of the Green's function, appear %o be
closely interiwined concepts, and one conjectures that a varistional expression
for a quantity of interest (impedance, scattering amplitude) is obtainable

only when sny antisymmetry in the Green’s function has no effect in the

quentity considered.

4. APPLICATION TO THE THIN CYLINDRICAL DIPOLE IMPEDANCE CALCULATION

We have reported elsewhere [1] numericsl calculaticns of the impedance of
a thin center-fed hollow cylindrical dipole anienna of radius r, half-length L
in the homogeneous magretosphers. The ambient medium was assumed to have the
scelar permeability of vacuum and to be anisotropic through a& uniaxial non-
symmetric dielectric temsor. Taking an R,¢,z cylindricel coordinate system
with z meesuring distance along the dipole’s axis from its center,;g the unit
vector parallel to the z-axis, we 2ssumed

(a) +that the current~density‘on the dipole's surface is independent of

azimath, ard

{b) that the current elements are everywhere parallel to the z-axis.

Assumption (b) is the same as assuming ihe dipole made of Faraday-screen material

with elsments everywhere parallel to the axis; azimuthal current components,
clearly possible wilh thick dipoles in a gyratory medium, are thus assumed
suppressed, or at least negligible as far as the impedance is concerned.

Thus the "complex power® cslculation takes the form

ZezmrY0)) @ =

-"2}? /"2;.7 /f'a‘fy ,-L A \25)

g/ﬁ,” /,,'/5’/ y, ;’ ( ?aﬁ.’ﬁ’/é&’,‘;f‘}"’g’# 5,22/?5’{?9
N dp [ ') de [ o’ j (R (2 B QLEAT R LU, 8) 2 4
:/0 "/@ 41«444 (4,’/[:..41

EREEN



where j(0) gives the current density across the central sircumferentisl antenna
gap, and where the constant N contains mumerical and dimensionai constants
unessential to the following discussion. Ome obtains the variational form by
simply removing the asterisks. For the isotropic ‘vacuum! csse we may use

the known closed form for G here, giving a fourfold integral, or double surlace
integral, %o be evaluated for estimating 7 from an assumed j(z). Fox our
gyratory medium we are forced to a representation for G end fird it converient
to use the Fourier representation {(13) for discussion. {In the actual calcula-
tion we used {15).) This gives /25) in the form of a seven-fold integral from
which we select out only the double integral cover the azimuth angies 4.4 for
further discussiov. In the exp(ik-(x-x')) of {13} we choose the x, axis
{dentical with the dipole's, or the z-axis, so that one writes conveniently

x, = Reosd, x, = Rsind. Under assumptions (a) and {b), ¢ and ¢‘ now appear

in (25) only in the exponential of the Green's function representation, and,
with R = r on the dipcle‘s surface in the form

4 T =,
»,_' ,y‘{, ’Cé’ ;é p%é’r"vs o “'”f - ;/me (R J{J = £ /\'26‘;

Liter dividing out the common factor r’P eq. {25) now has the form
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We are now i posl*ion *o discuss errove entailed in the frejueculy mads
szsumption
] that the radiating cuvrent jiz'), szssumsd “n JZ5) mod (270 to he
distrituled ovzr *he dipole's gurfnce, 2er be vapiuced by & cwrreny of



On this assumption and in the notation of (27) we wculd therefore calculste an

approximete %o according to

[ / LV r2r {A, ) ;é
—— < , 0 OS5 ¥ 2 S/# )
£=Z (+) =] } 4,72'0//6 rlhcosg +4 )a/gﬁf/%‘ (28)

From (27) we now have

Ae \TTETTTATY T
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in which J, is the Bess€l functica and the integrsls are formed in Wa*son 's
“Besse). Functions™, pp. 31-32. Thus the 'exact’ Z is found from the approximate
Z, caeleculeted under assumption (c); the ssme relaiion (29) will hkold for ihe
variational calculaition as well as for the complex power form, since the forre:
is obtained from the latter on eliminating the asterisks in the { § of {27).
Similarly, the limits + L of the 2,2z’ integrals in { }, specific io the center-
fed dipole, will differ for otber tnin-cylinder impedance problems, without
affecting the epplicability of (29).

For the thin dipole the radius~to-half-length catic r/L is small, aod it
is appropriate to expand Z or Z¢ in powers of this parameter. Actuelly it is

found that
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fregquency w. The correction {(29), eliminating any errors arising from

aasumption (c), is then

- 4‘9 4 &
Z = s /0‘7L 2/50%“# [(I lrsin e ’ T

7L fﬁ /[(?f‘,»m '9/{/—’” f/f
'"'"/4 /Dcy;w)?;g *Q[{/{L)/og (’A’:}! v

Thus Zo snd Z are 1dentical in their fwo leading terms, which are dominant for

r/L << 1 higher order corrections can be mede as recessary by krown integrais.
The prescription (29} for obtaining Z from Z 4, is the result of being driven

tc use a Fourier representation fo‘,gvrather than the clicsed form of the ususl

crloulations; existing discussion [6] of the error Z-Z, based on the closed-form

E of the isotropic case appears to be relatively qualitative.



APPENDIY I

PROSPECTS OF OBTAINING A CLOSED-FORM DYADIC GREFN-S FUNCTION

We investigate the prospects of obtaining in closed form a dyadic Green's
function for the reduced Maxwell's equations for a homogeneous anisotroplc
medium. We are specifically interesied in a medium having a unisxial tensor
dielsectric such as that pertaining to the magnetosphere, or a uniaxial ienso:
permeability sppropriate tc a magnetized ferrite.

We have obtained, in eq. [1l6a}) of the text, & scalar integral g{§)9 +o
which appropriaste differential operators may be appiied %o obtain the dysdic
Green's fur~ticn: Essentially,

- f;_,j{,z: 13
3® = [« B

waere Q/k) is a polynomial in k; ,ky,k;, = p,g,r of ever degree mo higher thau “hs=
o

a

Ea
fourth. The roots of Q(g)rr ¢ for a giver direction k are four in numbe:

corresponding to two plane waves {of differing volarizations) -~unuing in both
b k 5 X

: oy cie D o e s o .
e positive and the negative k direction. (This is sezen moes easily by owapi.-

o

s

ing plare~wave solutions of the reduced Maxwell & equaiione "1} or (&) .} The
integral {Al)‘thus epresents a superposition of (scalar) plane waves having
(a* leas* nearly' common phases at *hs source X = 0. The asympic’ic behavior
of.g in the neighborhood of a point x far distant from the source is that of

two plere weves having phsses dewsimined by x and emplitudes determived by
~F

i

W

vainating the integral (A1 asymptoticelly. FEq. (16a) was proposed es e

¢

gtavting peint here; ona mighi do *he R integiatlon of the leg®t {fovm firas,
lasviog the 3. & integrales Zo the oud Yo spseify ‘ne 2t LS

ne asyeptotie  Dar field’ epproximailon valld for large lxi.



More quantitatively, one regards the g of (Al) as the analogue of
g = exp{ik,r)/r, r= (B + # + z’)%, with k; giving 211 four roots of Q(k) = C
{at least those not cancelled by the P;; of (13), (15)] in the isotropic ‘free
space' case. Here the scalar Green's function is of the form A(x,y,z)ei¢(x’y’z),
and we look for a generalization of the form Az(ﬁ)eiﬁifﬁ) +‘A3(z)ei¢b(£) where
the ampiitudes A and the phases ¢ are given explicitly in terms of x,y,z and
the constants of the medium. For large X5 the amplitudes vary slowly and the

mein variation of g is according to the phases &(x,y,z). Given the explicit g,

we should therefore be able to determine the constant-phase surfaces o(x,y,z} = 4, ;

this takes on physical significance, and permits asymptotic mathemstical methods,
for large Lft, i.e for large ¢;, since ¢01§i for large i§| and fixed direction g@
The problem of finding the constant-phase surface or surfaces is that of
finding the envelope of the plane-wave phases 5°§ = ¢, subject to the condition
that Q(s) = 0. This is basically identical with the problem of evaluating {(Al)
by stationary-phase methods after performing one integration (sasy the R-integra-
tion of (16a)) by residues. Alternatively, Q(k) = O gives the sguetion for
propagation constants Eﬁ’ Eﬁ of the (two) kinds of plane waves leaviug the point
source with approximately common pimses; at large distance |x| their pheses are
given, with relative error decrecasing with lgf, by &ﬁ'ﬁ’ &y“g go that the
problem of finding the constant phase surface is to fird the envelope surfece
of the system ¢, = £°§, Q(g) = Q, Mathematically the problem is one of eliminat-
ing's = p,q,r among the four equations Qip;q,r) = O, &, = px + Qy + 2, X/Qp =
y/Qq = 2/Qy, where the subscripts demote vhe partial derivatives. This elimiva-
tion is possible only whea & ,x.y,;% satisfy a velatlon, wiisch ve prefes ir fthe
form ¢. = o{x,y,2).

This ervelops problem 13 of the Type tresitad iz 19th centory works oo



algebreic curves. We do not find an explicit comsideration of our problem in
the most general case, but do find results pertaining to uniaxial geometries
of the type encountered in the magnetospheric and ferrite media. In these
cases, we may take the z-axis in the principal direction, the x-~axis in any
orthogonal direction, and ignore the y-variation by virtue of the rotational
symmetry of the problem about the z-axis. For the magnetospheric case, q is
set to zero in Q(p,q,r) and the resulting Q(p,r) is biquadratic in both p and
r. The envelope problem is now one of finding the envelope of the lines

#s = px + rz, where p and r satisfy the biquadratic relatien Q(p,r) = C.

This problem is treated in Salmon's "Higher Plane Curves® {Third edition,
1879) sections 90, 92, 298, and 300. According to owr understanding, the
equation of the envelope is given there in the equation S° = 277, where, in
Salmon‘s notation, S = (gl2)* is a homogeneous polynomial of second degree in
¢, ,7%, and T = (612)%(623)%(a31)® is homogeneous and of third degree in
these variables. (The notation does not imply that S and T bave a common
factor.) Salmon gives S and T explicitly in terms of the coefficients of Q.
According to our algebra, the resulting envelope equation is homogereous and
of degree 6 in the foregoing variables, and the coefficients of #4,*%, &,’°
vanish only in exceptlonal circumstsnces. Thus to find ¢, in terms of x,% one
hae generally to solve a sextic in ¢,® with roots function of @, 22. No
explicit formula for any root is to be obtained; furthermore, one would have to
assign physical significance to all six roots.

If our understanding of the envelope problem and the implied algebraic
manipulations has been correct; there appears no hope of finding an explicit

closed~form Green’s function by any process., For one would then have sxpiicit

formulas for constant-phase surfaces which certainly are asymplotic to wave~front



envelopas of the foregoing type et great distances. This being the case, one
would have developed explicit closed-form expressions for the roots of a sextic
in terms of the coefficients, known to be impossible in the gereral casze.

Thus we are restricted to a representation for the Green's function. This
does not mean, however, that an alternative implicit algebraic representation
might not be possible or useful, or thei the foregoing interpretation and
algebra is not open to question, or that specisl cases where the sextlc reduces

to lower degree should rnot be exsmined for physical interest.



APPENDIX II

REMARKS ON THE PROBLEM OF ESTIMATING THE IMPEDANCE

OF AN ANTENNA IN THE MAGNETOSPHERE

Our purpose here is to discuss some aspects of the behavior of practical
antennas in the megnetosphere, in order to justify our not discussing the
effect of ou% elenentary assumphions concerning the artenna gap on the
celculated impedances.

The magnetospheve 1s & thin plasma, so that a soiid sntenna surface secis

as a surfece of ion--electron recombination; consequently, & plasma sheath is

4

formed around the antenna with dimensions delermined by the plasms s densify

2x

and temperature. This sheath represents an inhomogeneity in the medium, sc
that an antenne impedance caleulation, based on our assumption of a homogeneous
medium, needs correction of presently uraestimsted amount, and by presently
undetermined methods.

Wher used in trensmissior, the antenna will creste locally high rsdic-
frequency =lectric fields. The msgnetospheric plasma presents a nonllinear

.\f.‘)

medium for high fields, as evidenced by the Luxembourg effect, in wihich the
trasnsmitte~s are on the ground. We a~e only beginring to have experimental or
theoretical =stimates as to what effects such nonlinearities may have oz sntenus
pverformance [7]. An experimental beginning here has been made by messuring the
impedance apd transmitted fields of an antenna in *the megnetosphere ag funciion
of its input power level.

Tne practizal antenna configuration is not thay of the geomertiically purs

P v - o e £ - S
hara, but ove in whilehl ths wu

diprle soraidered

atiached 7o a metailic cepsuls corlalalog pover el el



gap problem iz thus obscured in praciice, and it szems advisable %o measure
and ipterpret impedances observed with practical magnetospheric sntennas in
terms of differsnces between impedances observed in the magnstosphere and those
cbserved in the lower atmosphere, or in essentially vacuum conditions ai very
great altitudes. Here the errors due to assumptions concerning gap geomatries
and currents are common and subtracti out when impedance differences sre con-
sidered. The same holds for the krown effect of the finite capacity of the
solid or reund or finitely-thick end surfaces of practical dipcles; the ceglect

of such capscities here leads to kuown discrepanciss betweesn *he predicted zand

measured impedances of ideal dipnles in the ‘free space’ medium, but their

fou

effect should subtrect out agein wher impedsnce differences are uv

tion.

ey considers-—
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